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Abstract: Many of the challenges at the Energy Frontier Research Center are as-
sociated with understanding the processes in fluid-rock systems for geologic se-
questration of CO, and developing technology for the safe storage of CO, in deep
subsurface rock formations. This paper describes ongoing research in analysis of
experimental data, including videos of CO; capillary trapping and dissolution,
and computerized tomograms of porous materials. We discuss how we tackle
visualization of numerical simulation output in key target areas as computing
reaction rate in terms of the permeability based on inlet and outlet conditions of
the porous media.

1. Introduction

The objective of the Energy Frontier Research Center (EFRC) for Nanoscale Control of Geologic CO,
(NCGQ) is to investigate the processes that play a role in geologic sequestration of CO; in fluid-rock
systems. Such understanding is required to develop the technology needed for safely storing CO;
in deep subsurface rock formations. Geologic sequestration of CO, is being pursued as a means of
reducing the amount of CO,, one of the principal greenhouse gases, being released into the atmosphere
by processes that burn fossil fuels.

The NCGC investigates processes in fluid-rock systems from the molecular scale to the pore scale.
They generate large amounts of experimental data for different parameters, for example, variation of
brine mixtures at different temperature and pressure values in porous media, while keep tracking of
immiscible fluid structures, dissolution, and precipitation [3; [10]. Numerical computer models cal-
culate fluid-rock mechanics at pore scales, infiltration stability and instabilities, and emergent struc-
tures. Understanding these processes is key to describing flow and reactive transport of CO;-rich
fluids in geologic reservoirs and to develop approaches for controlling the flow of CO; in reservoirs
that effectively and efficiently fill pore space with injected CO,. Another member of the EFRC that
we collaborate with is the Advance Light Source (ALS), particularly its Beamline 8.3.2, which permits
tomographic monitoring of fluid invasions of 3D porous materials, precipitation, and dissolution [1].

Our work in collaboration with EFRC includes analysis and visualization of both experimental data
and numerical simulation outputs in some key target areas. We have built image-processing capabili-
ties that can extract fluid and material quantities from experimental data to measure key phenomena,
so we can later initialize, calibrate, and check numerical simulations. Our algorithms allow detection
of carbon dioxide in porous materials, quantification of CO, during flow, and recovery of material
structures from micro-CT. We visualize and analyze time-dependent behavior of numerical simula-
tions by displaying simulation results along with derived diagnostic quantities such as reaction rate.

This paper describes three different modules, with peculiar material, methods, and results. There-
fore, we dedicate a self-contained separate section for each of these modules. Section 2] describes the
source data and algorithms used for quantitative image analysis in order to automate measurements



from videos of CO, dissolution at the pore scale (micrometer), including results of the 2D image anal-
ysis evolving in time. In order to deal with image analysis at a larger scale (ym to cm), and in 3D,
Section ] introduces a pipeline for extracting porosity parameters from micro computerized tomo-
grams of porous samples, imaged at the ALS. Section ] describes techniques to visualize reaction rates
in simulation data, with discussions in Section [5}

2. CO, transport and flow on video

In order to quantify the spatial distribution of CO,, an ex-
Fe—r— perimental setup was designeq as illustrated in Fig. .
s00nmresolution | | Here, the porous medium consists of a quartz plate with
B an etched pore network, composed of 560 grains, of 580
pum diameter, subjected to varying values of pressure and
temperature. Wan’s laboratory [13] experimental setup has
control of high-P interfacial tension and contact angle mea-
surements, so that it is possible to image and measure su-
percritical COp-brine interfacial tensions under pressure
up to 300 bar, temperature up to 100°C and under con-
trolled brine chemistry conditions. One new tool is a high-
P/T transparent 2D porous medium, which allows imag-
ing of multiphase flow, phase displacement, wettability al-
teration, and supercritical (sc) CO,residual trapping.

We focus on the analysis of videos of the homogeneous

porous network for quantitative transport studies. We de-
" design & e o signed an algorithm that detects the spatial distribution of
supercritical (sc) CO»at pore and pore network scales dur-
ing the postinjection stage, under conditions relevant to
deep reservoir CO; sequestration. Our algorithm for cov-
erage area vs. time of micromodel (CATM) measurement
has three main stages.

The first stage consists of segmenting the template by
. T2 , processing a picture of the porous network before the in-
tatively. Courtesy: Jiamin Wan’s labora- jection of fluids and at the same focal distance the video
tory, LBNL. will be recorded. From the template, we observed that it is
possible to select a single and small patch (a.k.a. control-matrix template) and determine parameters
necessary to align the video frames to a common coordinate system. These parameters enable rotation
and translation of any video frame with respect to the template image (pore network only).

Since the image acquisition device is subjected to displacements, the second stage must include a
registration procedure [8] and takes into account the parameters calculated in stage 1. Here, a particu-
lar video frame is rotated and translated automatically before the calculation of its spatial correlation
with the control matrix. The maximum of the spatial correlation [6] result determines the exact position
for the alignment of that particular frame with the template.

In the third stage, the algorithm eliminates the pore area and keeps the area that can be invaded by
brine and/or CO,, which is followed by searching for “bubbles” of carbon dioxide in that area. Next,
we enhance the contrast of the image by running the contrast-limited adaptive histogram equalization
algorithm [14], modeling the histogram with an uniform distribution. Then, we “homogenize the
detected liquids” by performing a binarization, considering only gray levels smaller than a threshold,
determined empirically, here equal to 160, followed by the application of morphological operators to
fill holes. The result is the coverage area corresponding to sc-CO5.

o o
Figure 1. Experimental setup uses a
transparent and homogeneous porous
network for imaging the multiphase
flow, phase displacement, wettability al-
teration, and sc-CO; residual trapping as
a model to study CO; transport quanti-

2.1 Result: dissolution rate of residual CO,

We analysed 5,578 images of 2848 x 4288 pixels, composing a video of approximately 417 minutes.
Figure 2] shows the output for each step of the CATM algorithm, with template determination of the
micromodel alone (before injecting brine and CO,) for later registration. Then, for each frame, we
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Figure 2. CATM pipeline: image patch from the transparent porous medium (a) undergoes spatial
correlation calculation using the control matrix (b), followed by detection of best alignment (c); (d)
ilustrates the segmentation: partition of the image into sc-CO; area and subtrate-brine area.

use a subimage (Fig. [la) of the micromodel to be correlated to the control-matrix. After finding
the best alignment to the pore network, as in Fig. Plc, the algorithm removes the pore network before
segmentation of the remaining area into CO; and substrate-brine area. Next, we calculate the coverage
area vs. time for the whole video, as illustrated in Fig. [3, where the x-axis indicates time in seconds
and y-axis is dissolution, calculated as the ratio B/ A, where B is the area that was actually invaded by
CO; and A is the micromodel area that can be invaded by fluids. Each point represents an analyzed
image, although the graph illustrates only points that are 30 seconds apart while the acquisition is at
every 3 seconds.
Our algorithm quantifies the dissolution rate of the
S T ‘ ' 1 residual CO, by means of calculating the ratio between
| the detected sc-CO; and the area that can be invaded
by fluids. The graph in Fig. 3| shows the dispersion for
the area percentage values, mostly due to artifacts dur-
ing the remotion of the pore by using the template. In
spite of the accuracy limitations, it enabled the analysis
of the experiments for several minutes and correctly de-
tected that the concentration of sc-CO; decays along the
Figure 3. Variation of percentage of sc-CO, experiment.
saturation area during 417 minutes mon- This section described research using homogeneous
itoring of a filling evacuated micromodel porous network under conditions relevant to under-
with 85 bar CO; saturated at 1M NaCl at  stand geochemical reactions and transport in multi-
50°C. phase subsurface systems, particularly those involving
interfacial phenomena. The next section addresses algo-
rithms to describe the substrate, where transport may take place, based on the porosity of the material.

CO2 saturation area
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3. Analysis of porous material from synchrotron microtomography images

Porous materials imaged by using synchrotron-based x-ray spectromicroscopy (Beamline 8.3.2 at the
Advanced Light Source [2]) are represented as a 3D stack of 2D slices. We use this source of data as
input to nondestructive techniques that quantify properties in the interior of solid objects, including
information about their 3D geometries. This quantification may support modeling of the fluid dynam-
ics into the pore space of the host object. Our pipeline filters, segments, and extracts features from
porous media with potential applications to carbon sequestration research.

One of the challenges is to minimize the image artifacts (fringes), which generate false sharp bor-
ders. Our framework controls spurious heterogeneity of the image using 2D bilateral filtering [12],
an edge preserving smoothing technique that allows tuning of a stencil for eliminating false contrasts.
Next, a segmentation algorithm splits blocks of the volume into homogeneous regions, calculating the
pertinence of a certain pixel/region to be part of a larger region. This merging requires a statistical test
to check whether the mean intensities are similar enough for the regions to be merged, based on the
deviation of observed differences between regions of the image [11]].



To analyze the physical properties of the material, as well as compare the results from experiments
and simulation, we summarize the geometry of the pores. By extracting an (annotated) graph that
reflects their connectivity, we provide a compact descriptor that can be used to quantitatively charac-
terize the material. We illustrate the application of such a pipeline to a Fe-sand porous material placed
inside a metallic cylinder, with dimensions 1813 x 1813 x 510 pixels at 1.7 ym.

3.1 Result: porosity of micro-CT hyperstacks

Given a stack of image slices, our framework classifies the porous media into solid and empty spaces.
Fig. [ illustrates it can be applied to high-resolution x-ray microtomography images. First, the user
selects the region of interest from a slice (e.g., sample inside the cylinder); these parameters will be used
for all other slices. Next, a border-preserving filter minimizes fringes and streaks while augmenting
the contrast between solid and empty spaces.

(a) (b) (o)

Figure 4. (a) Slice of porous material, after reconstruction from x-ray beams; (b) region of interest from
sample in the cylinder, after range-domain filtering; (c) borders of segmentation result overlaid on
image (a) .

Then, the algorithm performs classification of the pixels into regions, maintaining the average gray
level for each region. The final step outputs a binary image by running a standard fuzzy thresholding
algorithm, using Shannon’s entropy function to determine the cut-off among the intensity values.

(a) (b)

Figure 5. (a) Reeb graph of the fat pores in the (down-sampled) data illustrated in Figure @ Com-
ponents shorter than the third of the height of the material are not shown. The two most persistent
pockets are marked with the largest spheres that fit inside; (b) persistence diagram of the pockets of
the same material with noisy (low-persistent) points removed.

The resulting binary classification lets us study the three-dimensional geometry of the pores. Our
goal is both to visualize their internal structure and to be able to compare multiple materials. To this
end, we extract a pair of multiscalar geometric descriptors.



We restrict our view to the subspace of the pores where every point is the center of an empty sphere
of a given radius r. At every depth 4 into the 3D stack of the images, we have a collection of connected
components of this space. By collapsing each component, we get a Reeb graph [5]. This structure
captures the topology of the “fat pores,” that is, of the empty space in the material that’s thicker than
the given threshold r. Figure illustrates this construction for the solid volume, composed of slices
as in Fig. [

In addition to the graph of the fat pores, we use the theory of persistent homology [5, Chapter
VII] to detect pockets within the material, where the liquid can accumulate. We say that a pocket has
parameters (s,!) if the largest empty sphere that fits inside has radius /, while the largest sphere that
can escape has radius s. The larger the difference | — s between these radii, called persistence, the
more significant is the pocket. By plotting all the pairs (s,!) in the plane, with s as the abscissa and [
as the ordinate of the point, we get a persistence diagram, as shown in Fig. points further away
from the diagonal represent more persistent pockets. The diagram serves as a guide to the material:
it highlights significant scales, shows all the pockets at once, and allows the user to compare multiple
materials.

4. Visualization of simulation data of flow in porous media

Members of the SciDAC Applied Partial Differential Equations Center (APDEC) are developing nu-
merical modeling and simulation methods for the NCGC. This work centers on algorithm develop-
ment for modeling two fluids—CO, and water—flowing and reacting in microscale pore space. The
simulation methods employed are based on an embedded boundary/volume-of-fluid approach. Each
cell of the computational grid has information specifying what fraction of the cell is filled with the
various materials/fluids participating in the simulation. The simulation models the interface between
individual materials as an implicit function and updates this function according to simulated chemical
interactions.

Current simulations performed by APDEC consider only one phase (CO;) and its flow around
pores in the medium, which are modeled as packed spheres at different densities. Of primary interest
is how these systems evolve over time. To visualize the temporal change of the system, we derive two
quantities; the area normalized dissolution rate (i.e., reaction rate) [7] and permeability (i.e., resistance
of the system) as a function of time. Approximations to both quantities are computed as sums of
derived expressions (based species concentration, velocity and pressure) over a one-cell-wide slice at
inlet and outlet, respectively. Using Vislt [4] with its ability to reconstruct material interfaces, to define
derived quantities as expressions and to perform queries that compute sums over select regions of
the simulation, we compute time curves of reaction rate and permeability. We then plot a curve that
shows the evolution of these quantities. To correlate the behavior of this curve with behavior of the
simulation, we display visualizations of the 2D or 3D simulation domain.

In Fig. [, we display 2D pseudocolor plots of variables of interest (such as species concentrations
or pressure). In these pseudocolor plots, values are mapped to colors, and each location is colored
according to the function value at that location. For example, the left-hand side of Fig. [f| shows the
simulation of a sphere packing with 70% porosity. The pseudocolor plot shows the concentration of
Ca*" throughout the domain (with white disks signifying the positions of the packed sphere serving
as an obstruction). The curve in the lower part shows how the reaction rate changes as a function of
time. To correlate the current time step to the curve, a red line and dot highlight the current time step
in the curve. When shown as animation, this setup serves well to illustrate the different stages along
the curve. Initially the reaction rate slightly increases until the species hits the first packed spheres.
Subsequently, there is a slow decrease as the concentration within the packed sphere region increases.
The figure shows a time step at the end of the stage as the maximum species concentration is about
to arrive at the outlet. As soon as this occurs, the reaction rate decreases very quickly. The right-hand
side of Fig. [f|shows a pseudocolor plot of pressure in a time-dependent geometry, with curve below
emphasizing how permeability of the system changes over time. This type of analysis is important to
systems where the pore space changes as a result of reactive transport processes such as dissolution
and precipitation.
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Figure 6. Visualizations correlating the temporal evolution of derived, per timestep quantities (curve
plot) to system state in the 2D physical simulation domain (pseudocolor plots): (Left)Concentration of
Ca?t (top) and reaction rate (bottom). (Right) Pressure (top) and permeability (bottom) [9]. The axes
for the pseudocolor plots correspond to the spatial dimensions of the simulation domain.

Pseuchcobr

Figure 7. Visualization correlating temporal evolution of reaction rate (right) to 3D simulation views
of flow through a packed cylinder (left, center). (Left) Pseudocolor plot of Ca*" concentration on
select axis-perpendicular slices (one slice for each axis through the simulation domain center and two
additional x-perpendicular slices). (Center) Packed spheres rendered transparently to illustrate the 3D
packing and volume corresponding to Ca*" concentration above a threshold.

In 3D it is no longer possible to use a simple pseudocolor plot to show the variation of a variable
withing the system. Instead we display quantities such as Ca®" concentration on selected axes, per-
pendicular to slices (three slices perpendicular to the x-axis evenly through the simulation domain as
well as one y-axis and one z-axis perpendicular slice through the simulation domain center); see the
left panel of Fig.[7] In addition, we can show 3D visualizations of the system (middle panel of Fig.[7)
for transparent packed spheres to simultaneously illustrate the packing and the volume corresponding
to Ca>* concentration above a certain threshold. As in the 2D case, we correlate this information with
a curve plot (right panel) that shows the evolution of a derived quantity (reaction rate in the figure) as
a function of time. A black dot and line mark the current visualized time step on this plot.

5. Discussion/Conclusion

Typical carbon dioxide sequestering layers include brine-soaked sandstone subsurface aquifers; there-
fore the analysis of micromodels is relevant since they resemble sandstone and allow investigation
under brine-scCO, interaction. On a larger scale, we analyzed sandstone porous media and create
methods to assess its permeability.

We developed quantitative image analysis methods to automate measurements of experimental
data, proposed a framework to detect/reconstruct material interfaces for future quantification of CO;
flow, to recover material structures from micro-CT, and to visualize data from fluid-flow simulations
in porous material.



The calculation of sc-CO; dissolution in micromodels using videos of micro-model confirmed that
trapped residual CO; is unstable. The algorithm should be improved to be more tolerant to pore
shadows and/or the camera to be fixed during image acquisition.

We partitioned material with different density for structure reconstruction, using micro-CT and
described its pore structure using Reeb-graphs and persistence diagrams. Also, we developed visual-
ization algorithms to tackle simulation of fluid flow on pore network.

This new capability is a big step forward for the EFRC, increasing their ability to have scientific
insights about their experiments and respective parametrization, compare different materials in terms
of their persistence diagram as well as accelating the analysis of large amounts of data.

Future developments include evaluation of measurements in experimental data given ground-truth
data, including comparison among different segmentation pipelines and description of permeability
of pore network using persistence diagrams.
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